3.591 \(\int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx\)

Optimal. Leaf size=278 \[ -\frac {(a (A-B)+b (A+B)) \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {(a (A-B)+b (A+B)) \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}-\frac {(b (A-B)-a (A+B)) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {(b (A-B)-a (A+B)) \tan ^{-1}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )}-\frac {2 \sqrt {b} (A b-a B) \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\sqrt {a} d \left (a^2+b^2\right )} \]

[Out]

1/2*(b*(A-B)-a*(A+B))*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)+1/2*(b*(A-B)-a*(A+B))*arctan(1+2
^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-1/4*(a*(A-B)+b*(A+B))*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(
a^2+b^2)/d*2^(1/2)+1/4*(a*(A-B)+b*(A+B))*ln(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-2*(A*b-
B*a)*arctan(a^(1/2)*cot(d*x+c)^(1/2)/b^(1/2))*b^(1/2)/(a^2+b^2)/d/a^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.46, antiderivative size = 278, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3581, 3612, 3534, 1168, 1162, 617, 204, 1165, 628, 3634, 63, 205} \[ -\frac {(a (A-B)+b (A+B)) \log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {(a (A-B)+b (A+B)) \log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}-\frac {(b (A-B)-a (A+B)) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {(b (A-B)-a (A+B)) \tan ^{-1}\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )}-\frac {2 \sqrt {b} (A b-a B) \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\sqrt {a} d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cot[c + d*x]]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x]),x]

[Out]

-(((b*(A - B) - a*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d)) + ((b*(A - B) - a*
(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]])/(Sqrt[2]*(a^2 + b^2)*d) - (2*Sqrt[b]*(A*b - a*B)*ArcTan[(Sqrt
[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]])/(Sqrt[a]*(a^2 + b^2)*d) - ((a*(A - B) + b*(A + B))*Log[1 - Sqrt[2]*Sqrt[Cot[
c + d*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a*(A - B) + b*(A + B))*Log[1 + Sqrt[2]*Sqrt[Cot[c + d
*x]] + Cot[c + d*x]])/(2*Sqrt[2]*(a^2 + b^2)*d)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3612

Int[(((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]])/((a_.) + (b_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[Simp[A*(a*c + b*d) + B*(b*c - a*d) - (A*(b*c - a*d)
- B*(a*c + b*d))*Tan[e + f*x], x]/Sqrt[c + d*Tan[e + f*x]], x], x] - Dist[((b*c - a*d)*(B*a - A*b))/(a^2 + b^2
), Int[(1 + Tan[e + f*x]^2)/((a + b*Tan[e + f*x])*Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin {align*} \int \frac {\sqrt {\cot (c+d x)} (A+B \tan (c+d x))}{a+b \tan (c+d x)} \, dx &=\int \frac {\sqrt {\cot (c+d x)} (B+A \cot (c+d x))}{b+a \cot (c+d x)} \, dx\\ &=\frac {\int \frac {-A b+a B+(a A+b B) \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx}{a^2+b^2}+\frac {(b (A b-a B)) \int \frac {1+\cot ^2(c+d x)}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))} \, dx}{a^2+b^2}\\ &=\frac {2 \operatorname {Subst}\left (\int \frac {A b-a B+(-a A-b B) x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac {(b (A b-a B)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {-x} (b-a x)} \, dx,x,-\cot (c+d x)\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac {(2 b (A b-a B)) \operatorname {Subst}\left (\int \frac {1}{b+a x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac {(b (A-B)-a (A+B)) \operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac {(a (A-B)+b (A+B)) \operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac {2 \sqrt {b} (A b-a B) \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\sqrt {a} \left (a^2+b^2\right ) d}+\frac {(b (A-B)-a (A+B)) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}+\frac {(b (A-B)-a (A+B)) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}\\ &=-\frac {2 \sqrt {b} (A b-a B) \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\sqrt {a} \left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a (A-B)+b (A+B)) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(b (A-B)-a (A+B)) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(b (A-B)-a (A+B)) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}\\ &=-\frac {(b (A-B)-a (A+B)) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {(b (A-B)-a (A+B)) \tan ^{-1}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {2 \sqrt {b} (A b-a B) \tan ^{-1}\left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\sqrt {a} \left (a^2+b^2\right ) d}-\frac {(a (A-B)+b (A+B)) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a (A-B)+b (A+B)) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.42, size = 215, normalized size = 0.77 \[ \frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-2 \sqrt {2} (a (A+B)+b (B-A)) \left (\tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-\tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )\right )+\frac {8 \sqrt {b} (A b-a B) \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right )}{\sqrt {a}}-\sqrt {2} (a (A-B)+b (A+B)) \left (\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )\right )\right )}{4 d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cot[c + d*x]]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x]),x]

[Out]

(Sqrt[Cot[c + d*x]]*(-2*Sqrt[2]*(b*(-A + B) + a*(A + B))*(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - ArcTan[1 +
Sqrt[2]*Sqrt[Tan[c + d*x]]]) + (8*Sqrt[b]*(A*b - a*B)*ArcTan[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]])/Sqrt[a] -
Sqrt[2]*(a*(A - B) + b*(A + B))*(Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan
[c + d*x]] + Tan[c + d*x]]))*Sqrt[Tan[c + d*x]])/(4*(a^2 + b^2)*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {\cot \left (d x + c\right )}}{b \tan \left (d x + c\right ) + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(cot(d*x + c))/(b*tan(d*x + c) + a), x)

________________________________________________________________________________________

maple [C]  time = 4.77, size = 4107, normalized size = 14.77 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x)

[Out]

-1/2/d*(cos(d*x+c)/sin(d*x+c))^(1/2)*(-1+cos(d*x+c))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d
*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*(I*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin
(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^2*b^2+3*I*B*(a^2+b^2)^(1/2)*EllipticPi((-(-si
n(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2*b^2+2*a^2*EllipticPi((-(-sin(d*x+c)-1+cos(
d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*b^3*B-2*a^4*EllipticPi((-(-sin(d*x+c)-1+cos(d*x
+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b*B-2*a^2*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c)
)/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b^3*B-2*A*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/si
n(d*x+c))^(1/2),1/2*2^(1/2))*(a^2+b^2)^(3/2)*a^2-2*A*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),
1/2*2^(1/2))*(a^2+b^2)^(3/2)*b^2+2*A*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(a^
2+b^2)^(1/2)*a^4+2*A*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(a^2+b^2)^(1/2)*b^4
+A*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^2+A*(a^2
+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2-A*(a^2+b^2)^(
1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^4-A*(a^2+b^2)^(1/2)*El
lipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^4-2*a^3*EllipticPi((-(-sin(d*
x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*A*b^2-2*a*EllipticPi((-(-sin(d*x+c)-
1+cos(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*b^4*A+2*a^3*EllipticPi((-(-sin(d*x+c)-1+c
os(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*A*b^2+2*a*EllipticPi((-(-sin(d*x+c)-1+cos(
d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b^4*A-B*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*
x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^2-B*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+
cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2+B*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x
+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^4+B*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/si
n(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^4+2*a^4*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),a/(
a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2))*b*B-3*I*B*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c)
)^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^2*b^2-I*B*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))
^(1/2),1/2-1/2*I,1/2*2^(1/2))*a*b^3+3*I*B*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^
(1/2),1/2+1/2*I,1/2*2^(1/2))*a^3*b+I*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/
2),1/2+1/2*I,1/2*2^(1/2))*a^3*b+I*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),
1/2-1/2*I,1/2*2^(1/2))*a*b^3-I*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2
+1/2*I,1/2*2^(1/2))*a^2*b^2-I*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+
1/2*I,1/2*2^(1/2))*a*b^3+I*A*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2
*I,1/2*2^(1/2))*a*b+I*B*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/
2*2^(1/2))*a*b-I*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(
1/2))*a^3*b-I*B*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2
))*a*b+I*B*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a*
b^3-3*I*B*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^3
*b-I*A*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a*b+B*
(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^3*b-B*(a^2+
b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^2*b^2-B*(a^2+b^2
)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a*b^3+B*(a^2+b^2)^(1/
2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^3*b-B*(a^2+b^2)^(1/2)*El
lipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2*b^2-B*(a^2+b^2)^(1/2)*Ellip
ticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a*b^3-I*A*(a^2+b^2)^(3/2)*Elliptic
Pi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2-I*A*(a^2+b^2)^(1/2)*EllipticPi((-
(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^4-I*B*(a^2+b^2)^(3/2)*EllipticPi((-(-sin
(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2-I*B*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+
c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^4+4*A*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d
*x+c))^(1/2),1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^3*b-3*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/si
n(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^3*b-3*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d
*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a^2*b^2-A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+
c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*a*b^3+B*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(
1/2),1/2-1/2*I,1/2*2^(1/2))*a*b+B*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/
2+1/2*I,1/2*2^(1/2))*a*b-2*a^3*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2
)),1/2*2^(1/2))*b*B*(a^2+b^2)^(1/2)+I*A*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1
/2),1/2-1/2*I,1/2*2^(1/2))*a^2-A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2
-1/2*I,1/2*2^(1/2))*a*b^3+I*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/
2*I,1/2*2^(1/2))*a^4+I*B*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1
/2*2^(1/2))*a^2+I*B*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^
(1/2))*a^4-2*a^3*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/
2))*b*B*(a^2+b^2)^(1/2)+2*a^2*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^2+b^2)^(1/2)
-a),1/2*2^(1/2))*b^2*B*(a^2+b^2)^(1/2)+2*a^2*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+
(a^2+b^2)^(1/2)),1/2*2^(1/2))*b^2*B*(a^2+b^2)^(1/2)+4*A*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/
2),1/2*2^(1/2))*(a^2+b^2)^(1/2)*a^2*b^2+4*A*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/
2))*(a^2+b^2)^(1/2)*a*b^3+A*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*
I,1/2*2^(1/2))*a*b+A*(a^2+b^2)^(3/2)*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2
^(1/2))*a*b+2*a^2*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1/2*2^(1/2
))*A*b^2*(a^2+b^2)^(1/2)-2*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),a/(a+b+(a^2+b^2)^(1/2)),1
/2*2^(1/2))*b^3*A*(a^2+b^2)^(1/2)*a+2*a^2*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),-a/(-b+(a^
2+b^2)^(1/2)-a),1/2*2^(1/2))*A*b^2*(a^2+b^2)^(1/2)-2*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)
,-a/(-b+(a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b^3*A*(a^2+b^2)^(1/2)*a-3*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-
1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^3*b-3*A*(a^2+b^2)^(1/2)*EllipticPi((-(-sin(d*x+c)-1+c
os(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2))*a^2*b^2)/sin(d*x+c)^2/cos(d*x+c)*(1+cos(d*x+c))^2*2^(1/2)/
a/(a^2+b^2)^(3/2)/(a+b+(a^2+b^2)^(1/2))/(-b+(a^2+b^2)^(1/2)-a)

________________________________________________________________________________________

maxima [A]  time = 1.06, size = 221, normalized size = 0.79 \[ \frac {\frac {8 \, {\left (B a b - A b^{2}\right )} \arctan \left (\frac {a}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{2} + b^{2}\right )} \sqrt {a b}} - \frac {2 \, \sqrt {2} {\left ({\left (A + B\right )} a - {\left (A - B\right )} b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left ({\left (A + B\right )} a - {\left (A - B\right )} b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left ({\left (A - B\right )} a + {\left (A + B\right )} b\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left ({\left (A - B\right )} a + {\left (A + B\right )} b\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{2} + b^{2}}}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/4*(8*(B*a*b - A*b^2)*arctan(a/(sqrt(a*b)*sqrt(tan(d*x + c))))/((a^2 + b^2)*sqrt(a*b)) - (2*sqrt(2)*((A + B)*
a - (A - B)*b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*((A + B)*a - (A - B)*b)*arctan
(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*((A - B)*a + (A + B)*b)*log(sqrt(2)/sqrt(tan(d*x + c
)) + 1/tan(d*x + c) + 1) + sqrt(2)*((A - B)*a + (A + B)*b)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) +
1))/(a^2 + b^2))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {\mathrm {cot}\left (c+d\,x\right )}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )}{a+b\,\mathrm {tan}\left (c+d\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cot(c + d*x)^(1/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x)),x)

[Out]

int((cot(c + d*x)^(1/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {\cot {\left (c + d x \right )}}}{a + b \tan {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(1/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*sqrt(cot(c + d*x))/(a + b*tan(c + d*x)), x)

________________________________________________________________________________________